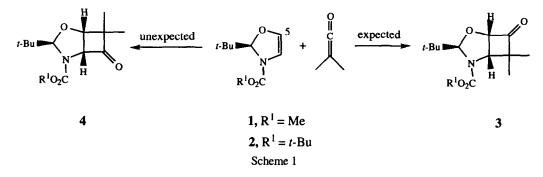


PII: S0040-4039(97)00364-X

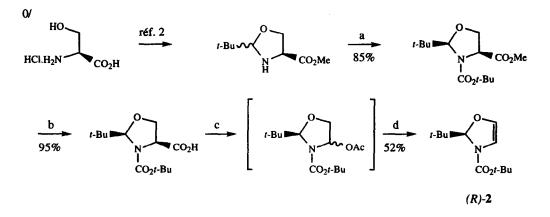
Unusual Regiochemistry of Cycloaddition of Ketenes to (R)-2-tert-Butyldihydrooxazole Derivatives. A Simple Route towards Enantiomerically Pure Functionalised α-Aminocyclobutanones.


José Renato Cagnon, Franck Le Bideau, Jacqueline Marchand-Brynaert and Léon Ghosez*

Université catholique de Louvain, Laboratoire de Chimie Organique de Synthèse Place Louis Pasteur 1, B-1348 Louvain-la-Neuve, Belgium

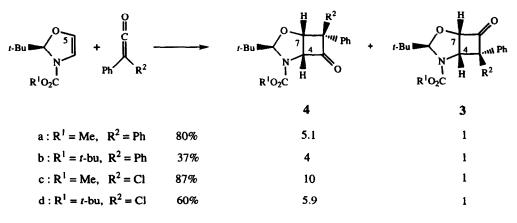
Dedicated to Professor Dieter Seebach on the occasion of his 60th birthday

Abstract: Ketenes have been found to cycloadd with (R)-2-tert-Butyldihydrooxazole 1 and 2 to yield predominantly regioisomers 4 resulting from steric control rather than electronic control. The cycloadditions provide a practical route to enantiomerically pure protected 2-amino-3-hydroxycyclobutanones. © 1997 Elsevier Science Ltd.


In connection with studies of new inhibitors of bacterial D,D-peptidases,¹ we required a flexible route towards enantiomerically pure 2-aminocyclobutanones which could be functionalised at C-3 and C-4. (R)-2tert-butyldihydrooxazole 1 which can be readily prepared² from (S)-serine appeared to us as an attractive olefinic building block which should react with ketenes from the less-hindered face of the olefin to generate enantiomerically pure cyclobutanones (Scheme 1).

However Seebach *et al* have shown³ that electrophilic additions to 1 always occur at C-5 as a result of the lower energy of an acyliminium ion relative to that of an oxonium ion.⁴ Thus it was anticipated that the reaction of 1 with ketenes would produce regioisomer 3 rather than 4. Extra steps would then be needed to generate a carbonyl group α to the nitrogen. This paper reports the <u>unexpected observation</u> that ketenes reacted with 1 and 2 to yield predominantly adducts 4.

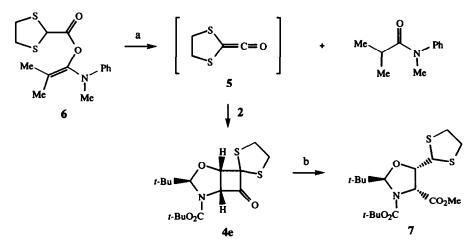
* e-mail : ghosez@chor.ucl.ac.be fax : +32 10 47 41 68


Compounds 1 ($\mathbb{R}^1 = Me$) and 2 ($\mathbb{R}^1 = t$ -Bu) were prepared according to the route published by Seebach *et al*² except for the oxidative decarboxylation step. A thermal oxidative decarboxylation with lead tetraacetate was preferred to the electrochemical method. Compound 2 is new. It was obtained in 34% overall yield from (*S*)-serine methyl ester hydrochloride (Scheme 2).

Reaction conditions : a : Boc₂O, Et₃N, THF, 12 h, RT; b : KOH, MeOH, 12 h, RT; c : Pb(OAc)4, benzene, Δ, 8 h; d : NH4Br, Cl(CH₂)₂Cl, Δ, 12h

Scheme 2

The results of the cycloaddition of 1 and 2 with diphenyl⁵ and phenylchloro⁶ ketenes are described in Scheme 3 and Table 1. When $R^1 = Me$, the isomer composition was determined by NMR of the crude mixture. When $R^1 = t$ -Bu, it was determined after flash-chromatography of the reaction mixture. Structures of **4b**, **4c**, **3c** and **3d** were confirmed by X-ray diffraction analyses.⁷


Scheme 3

entry	Conditions	Adduct 4			Adduct 3		
		δc ⁷	$\delta_{\rm C}{}^4$	δСН3	$\delta_{\rm C}{}^7$	$\delta_{\rm C}{}^7$	δ CH <u>3</u>
a	diphenylketene $(3 \text{ eq.})^a$ toluene, Δ , 2 hrs	79	73	3.73	91	62	3.15
b	diphenylketene (3 eq.) ^a toluene, Δ, 2 hrs	79	73	1.49	91	62	1.10
с	phenylchloroketene (2 eq.) ^b cyclohexane, 60°C, 2 hrs	82	74	3.75	92	66	3.06
d	phenylchloroketene (2 eq.) ^b cyclohexane, 60°C, 2 hrs	82	74	1.49	91	66	1.10
e	toluene, Δ , 7 hrs, Scheme 4	81	74	1.48			

Table 1 : Cycloaddition Conditions and Characterisation of Adducts

a) Prepared according to ref. 5. b) Generated from phenylacetyl chloride and triethylamine.

Ketene 5, a synthetic equivalent of the unknown dimer of CO, was generated by thermolysis of 6 in the presence of 2 (Scheme 4).⁸ The reaction gave only one regioisomer 4e. Its structure was established by comparison of its ¹H and ¹³C NMR spectra with those of compound 4c-d. Further support came from the transformation of 4e into crystalline 7 which was submitted to X-ray diffraction analysis.⁹

Conditions a: toluene Δ , 7 hrs, 40% yield; b : NaOH, H2O-acetone, RT then CH2N2 in ether

Scheme 4

These unusual results indicate that the electronic preference for the formation of **3** was outweighed by steric interactions between the ketene endo-substituent and the nitrogen substituent.¹⁰ Also they provide a direct and practical route towards enantiomerically pure protected 2-amino-3-hydroxycyclobutanones **4** which are potential sources of biologically interesting compounds.

Acknowledgements

JRC thanks CNPq and CAPES (Brazil) for supporting his stay in Belgium. We also thank the Services Fédéraux des Affaires Scientifiques, Techniques et Culturelles (P.A.I. n° 19) and the Fonds National de la Recherche Scientifique for their generous support. We would like to thank B. Tinant and J. P. Declercq for X-ray diffraction studies of compounds **4b**, **4c**, **3c**, **3d** and **7**.

References

- (a) Marchand-Brynaert, J.; Ghosez, L. Non β-Lactams Analogs of Penicillins and Cephalosporins. In Recent Progress in the Chemical Synthesis of Antibiotics; Ohno, M.; Lukacs, G. Eds.; Springer Verlag, Inc.: Berlin Heidelberg, 1990, pp. 727-794. (b) Marchand-Brynaert, J.; Couplet, B.; Dive, G.; Ghosez, L. Bioorg. Med. Chem. Lett. 1993, 3, 2303-2308. (c) Durand, T.; Marchand-Brynaert, J; Ghosez, L. Bioorg. Med. Chem. Lett. 1993, 3, 2309-2312. (d) Marchand-Brynaert, J; Davies, J.; Ghosez, L. Heterocycles 1992, 33, 313-326. (e) Marchand-Brynaert, J; Bounkhala-Khrouz, Z.; Vanlierde, H.; Ghosez, L. Heterocycles 1990, 30, 971-982.
- (2) Seebach, D.; Stucky, G.; Renaud, P. Chimia 1988, 42, 176-178.
- (3) (a) Seebach, D.; Stucky, G. Angew. Chem. 1988, 100, 1398-1400; Angew. Chem. Int. Ed. Engl. 1988, 27, 1351-1353. (b) Seebach, D.; Renaud, P. Angew. Chem. 1986, 98, 836-837; Angew. Chem. Int. Ed. Engl. 1986, 25, 843-844.
- (4) Lamatsch, B.; Seebach, D.; Ha, T.-K. Helv. Chim. Acta 1992, 75, 1095-1110.
- (5) Taylor, E. C.; McKillop, A.; Hawks, G. H. Org. Syntheses 1988, coll. vol. VI, 549-551.
- (6) Hassner, A.; Naidorf-Meir, S. J. Org. Chem. 1992, 57, 5102-5105.
- (7) Unpublished results.
- (8) Dejonghe, J. P. Dissertation, University of Louvain, 1977.
- (9) Tinant, B.; Declercq, J. P.; Cagnon, J. R. Bull. Soc. Chim. Belg. 1996, 105, 325-328.
- (10) The leading role of steric effects on the cycloaddition of ketenes to <u>alkyl-substituted</u> cyclopentenes has been shown by Hassner et al : Hassner, A.; Cory, R. M.; Sartoris, N. J. Am. Chem. Soc. 1976, 98, 7698-7704.

(Received in France 10 January 1997; accepted 21 February 1997)